Optimizer Classes
Each of the following optimizer classes can be initialized and passed to the "add_search"-method via the "optimizer"-argument. During this initialization the optimizer class accepts only optimizer-specific-paramters (no random_state, initialize, ... ):
Example
optimizer = HillClimbingOptimizer(epsilon=0.1, distribution="laplace", n_neighbours=4)
# for the default parameters you can just write:
optimizer = HillClimbingOptimizer()
hyper = Hyperactive()
# and pass it to Hyperactive:
hyper.add_search(model, search_space, optimizer=optimizer, n_iter=100)
hyper.run()
So the optimizer-classes are different from Gradient-Free-Optimizers. A more detailed explanation of the optimization-algorithms and the optimizer-specific-paramters can be found in the Optimization Tutorial.
- HillClimbingOptimizer
 - StochasticHillClimbingOptimizer
 - RepulsingHillClimbingOptimizer
 - SimulatedAnnealingOptimizer
 - DownhillSimplexOptimizer
 - RandomSearchOptimizer
 - GridSearchOptimizer
 - RandomRestartHillClimbingOptimizer
 - RandomAnnealingOptimizer
 - PowellsMethod
 - PatternSearch
 - ParallelTemperingOptimizer
 - ParticleSwarmOptimizer
 - SpiralOptimization
 - EvolutionStrategyOptimizer
 - BayesianOptimizer
 - LipschitzOptimizer
 - DirectAlgorithm
 - TreeStructuredParzenEstimators
 - ForestOptimizer