Sktime Classification
Introduction
The sktime classification integration enables hyperparameter optimization of time series classifiers using proper cross‑validation and scoring. Use it via:
- Experiment:
SktimeClassificationExperiment
- Estimator interface:
hyperactive.integrations.sktime.TSCOptCV
Key Features
- Works with sktime classifiers and pipelines
- Flexible CV strategy and scoring coercion
- Clean separation between optimizer and experiment
Basic Usage
from hyperactive.experiment.integrations import SktimeClassificationExperiment
from hyperactive.opt import RandomSearchSk
# prepare sktime data X, y and a classifier `clf`
exp = SktimeClassificationExperiment(estimator=clf, X=X, y=y, cv=3)
opt = RandomSearchSk(
param_distributions={"param": ["a", "b"]},
n_iter=20,
experiment=exp,
)
best_params = opt.solve()
With TSCOptCV
from hyperactive.integrations.sktime import TSCOptCV
from hyperactive.opt import TPEOptimizer
tsc = TSCOptCV(
estimator=clf,
optimizer=TPEOptimizer(param_space={"param": (0.1, 1.0)}, n_trials=30),
cv=3,
)
tsc.fit(X, y)
print(tsc.best_params_)
Notes
- Choose scoring appropriate for your task (string or callable)
- For forecasting (not classification), use
SktimeForecastingExperiment