Scikit-learn–Styled Optimizers
Hyperactive provides sklearn-style search using ParameterGrid
/ ParameterSampler
, with evaluation routed through Hyperactive experiments. This preserves familiar configuration while keeping the v5 architecture’s separation between search (optimizer) and evaluation (experiment).
Key characteristics:
- Sklearn-style search spaces via
ParameterGrid
/ParameterSampler
- Evaluation via a Hyperactive
Experiment
(typicallySklearnCvExperiment
) - Parallelism via optimizer backends (
backend
,backend_params
) - Results exposed on the optimizer (
best_params_
,best_score_
, etc.)